arbour本木詳細資料

为确定irAEs 风险患者,目前仍在进行多基因风险评分的相关研究,并需要对不同治疗方式和恶性肿瘤类型进行大规模关联研究 (Hoefsmit et al., 2019)。 肿瘤突变负荷在内的肿瘤因素可能与irAEs有关 (Bomze et al., 2019)。 一些临床试验评估了抗血管生成疗法与ICB联合治疗的益处,并已证明与ICB单独治疗相比,免疫抑制特征的患者肿瘤中免疫细胞浸润增加,预后得以改善(Hodi et al., 2014; McDermott et al., 2018)。 迄今为止,FDA已批准贝伐单抗(抗血管生成药物)联合阿替利珠单抗(PD-L1抗体)治疗未接受系统治疗的不可切除或转移性肝癌患者(Finn et al., 2020)。 这种联合治疗有望在未来扩大;这一组合也在治疗多种其它肿瘤类型中使用,未来有望增添适应症。 对这一机制的早期认识来自临床前小鼠模型,包括CTLA-4敲除(它们死于严重的自身免疫性淋巴组织增生性疾病)(Tivol et al., 1995; Waterhouse et al., 1995)及PD-1敲除(Nishimura et al., 1999),表现为狼疮样自身免疫性疾病伴关节炎和心肌病。 支持这一观点的是,CTLA-4的单倍剂量不足,以及CTLA-4和PD-1/PD-L1的多态性与一些自身免疫性疾病相关(Lo et al., 2016)。

抑制性检查点分子如PD-L1在这些细胞上的表达进一步增强了它们的免疫抑制作用(Gordon et al., 2017)。 一些研究已证明通过抑制M2型TAMs的活性并调节巨噬细胞向M1型极化可以增强对ICB的应答(Rodell et al., 2018; Zhu et al., 2019)。 2008年Zitvogel等人阐述了化疗和放疗的免疫调节效应(Zitvogel et al., 2008),其已成为联合治疗策略中提高对ICB应答的基础,目前正在多个临床试验中进行评估。 这些研究大多处于初始阶段,但据报道,经过化疗的无法切除的NSCLC患者和TNBC患者接受抗PD-L1抗体治疗后的总体生存率均有所提高 arbour本木 (Schmid et al., 2020; West et al., 2019)。 通过在临床前和临床做出努力来确定不同肿瘤类型的最佳治疗计划和剂量,有助于进一步扩大该治疗策略的获益人群。 有重要的数据表明机体对ICB的应答和来自于ICB的毒副作用之间存在相关性,尽管这些数据有些混杂,可能与所用药物、肿瘤类型、导致的irAE以及发生的动力学有关(Das and Johnson., 2019)。 有意思的是,设计用于计算白癜风、银屑病和过敏性皮炎的多基因风险评分(PRS)系统可以预测膀胱癌患者对ICB治疗的应答情况(Khan et al., 2020)。

arbour本木: 研究社 新英和中辞典での「wind」の意味

然而,这只是许多双特异性抗体配置中的一种,实际上,该技术独特的组合及新应用的潜力几乎是无限的 (Labrijn et al., 2019)。 比如,激活OX40和CD137,二者均为肿瘤坏死因子(TNF)超家族共刺激受体,能导致T细胞活化、增殖和存活;单独靶向或抑制OX40或CD137的单克隆抗体不但疗效不佳,而且可能促进肝脏毒性。 然而,OX40和CD137的双特异性抗体可促进FcRg交联非依赖性抗肿瘤活性,并可更多地限制肝损伤;目前正在开展运用双特异性抗体的临床试验 (Gaspar arbour本木 et al., 2020)。 治疗前肿瘤样本中免疫标记物的表达水平已被证实是潜在的预测ICB应答的biomarker。 在转移性黑色素瘤患者中,基线时肿瘤内高密度的CD8+T细胞被证实能预测对抗PD-1疗法的有效应答(Tumeh et al., 2014)。 重要的是,这项研究评估了肿瘤组织内T细胞的时空分布,并证明治疗前T细胞在浸润性肿瘤边缘的富集与更好的应答相关;而治疗后,应答患者的T细胞密度在边缘和肿瘤的实质内均增加(Tumeh et al., 2014)。

  • 人体的免疫系统依赖于复杂的制衡系统来保障对病原体(或肿瘤)产生有效免疫应答的同时保持对自身非肿瘤组织及一些共生生物的耐受。
  • 与此一致,NK细胞已被证明通过分泌CCL5和XCL1趋化因子增加cDC1肿瘤浸润(Bottcher et al., 2018),并建议通过靶向这些趋化因子通路作为改善对ICB应答的潜在策略。
  • 对抗PD-1治疗的良好应答与肿瘤进化景观的重塑有关,包括一些克隆群体在治疗中无法检测到,而T细胞克隆却增加 (Riaz et al., 2017)。
  • 肿瘤内微生物已被证明会影响肿瘤生物学的几乎所有方面,包括肿瘤的起始/生长、侵袭和转移 (Bullman et al., 2017; Riquelme et al., 2019)。
  • 肿瘤浸润的中性粒细胞显示出促肿瘤和抗肿瘤表型(Shaul and Fridlender., 2018)。
  • 在癌症的发生和发展过程中,肿瘤不断进化并可能呈现出各种机制来逃避肿瘤免疫监视及抑制抗肿瘤免疫反应。

因此,肿瘤突变负荷(TMB)量化为肿瘤基因组编码区各种突变的总数,已被用作确定肿瘤抗原性和阐释对免疫检查点抑制剂的应答或耐受性的标准。 黑色素瘤、肺癌和膀胱癌,这些肿瘤通常由于环境的因素导致DNA损伤使得突变数量增加,从而对ICB表现出更强的应答(Yarchoan et al., 2017)。 与无临床获益组的黑色素瘤患者相比,对伊匹木单抗和曲美木单抗(CTLA-4抗体)有持久应答的黑色素瘤患者TMB更高(Snyder et al., 2014; Van Allen et al., 2015)。 调控性检查点信号通路在外周组织中也很活跃,它们作用于各种免疫细胞类型,以防止炎症引起的自身免疫和组织损伤。 程序性细胞死亡蛋白1(PD-1;又名CD279)在活化的T细胞及其它细胞上表达,包括但不限于B细胞、自然杀伤(NK)细胞和髓系细胞(Hsu et al., 2018; Nam et al., 2019)。

arbour本木: 蒙特利尔大学蒙特利尔大学书店

在更名为“蒙特利尔大学”以前,学校颁发由当时的拉瓦尔大学本部签发的学位证,学位证上写的校名是拉瓦尔大学的拉丁语校名“Universitatis Lavallensis”,学位证内容使用拉丁语作为书面语,在更名后的一段时间里学位证也使用拉丁语作为书面语,后来才完全改用法语作为书面语。 另外,过去颁发的学历文凭和职业资格证书采用黑白印刷,到后来才采用彩色版的学历文凭和职业资格证书。 “蒙特利尔大学医学生”是蒙特利尔大学的校级体育队,代表学校参加各种体育竞赛,目前内设二十三个组别、涵盖十三个体育学科:羽毛球、加拿大式足球、高尔夫球、游泳、高山滑雪、男子足球、女子足球、乒乓球、男子排球、女子排球、女子冰球、竞技啦啦队、男子橄榄球以及女子橄榄球。 arbour本木 蒙特利尔高等商学院有两个标志,官方标志是直观地以蓝色字体的官方法语校名“HEC MONTRÉAL”左右排列为标志;“第二标志”(Logo secondaire)是以蓝底白字的官方法语校名“HEC MONTRÉAL”上下排列为标志,而这个形式的标志主要用于电子产品以及宣传刊物上。 该研究所的使命是:评估和治疗有暴力行为的高风险患者、提供专科和大学阶段的教育、开展基础和临床研究、防止暴力。 基于研究者们对ICB的各种耐药机制越来越了解,已经开发了多种治疗策略来克服耐药性并促进患者对ICB的应答。

  • 与该通路及其下游效应物相关的缺陷与对ICB的应答既负相关又正相关,表明该通路在肿瘤免疫中具有双重作用(Ayers et al., 2017; Gao et al., 2016)。
  • 有重要的数据表明机体对ICB的应答和来自于ICB的毒副作用之间存在相关性,尽管这些数据有些混杂,可能与所用药物、肿瘤类型、导致的irAE以及发生的动力学有关(Das and Johnson., 2019)。
  • 此外,大脑转移瘤中磷酸化的STAT3+反应性星形胶质细胞能降低CD8+T细胞活性并增加CD74+小胶质细胞/巨噬细胞的丰度,从而促进肿瘤免疫逃逸,其在对ICB耐药中也发挥潜在作用(Priego et al.,2018)。
  • 应当注意的是,尽管越来越多的证据表明这些遗传因素作为ICB应答的生物标志物具有益处,但并未在所有患者中观察到TMB与ICB应答之间的关联(Snyder et al., 2014)。
  • IrAEs非常常见,在超过90%的患者中会出现低级别的不良反应,产生严重不良反应(3-5级)的患者比例在20%-60%之间(Pauken et al., 2019; Postow et al., 2018)。

最近的两项研究均证实微生物广泛存在于泛癌种中,包括与呼吸消化道及其共生生物没有根本联系的肿瘤 (Nejmanet al., 2020; Poore et al., 2020)。 黑色素瘤、肺癌、卵巢癌、胶质母细胞瘤、胰腺癌、骨癌和乳腺癌中的肿瘤微生物群的特征表明,这些微生物可定位于肿瘤细胞本身或与肿瘤相关的免疫细胞内。 此外,这些微生物可能具有肿瘤类型特异性,因而可能会赋予肿瘤各种独特的功能 (Nejman et al.,2020)。 肿瘤内微生物已被证明会影响肿瘤生物学的几乎所有方面,包括肿瘤的起始/生长、侵袭和转移 (Bullman arbour本木 et al., 2017; Riquelme et al., 2019)。 胰腺癌患者的长期生存与肿瘤微生物群的α多样性增加及肿瘤内特定的微生物群存在相关 (Riquelme et al.,2019)。 然而,肿瘤内微生物可以改变肿瘤免疫微环境;肿瘤相关的微生物与浸润的免疫细胞减少及重塑的更具免疫抑制的微环境有关(Helmink et al., 2019)。 通过分析人类的样本,发现在接受免疫治疗的黑色素瘤患者中,应答者和无应答者之间的肿瘤微生物群组成存在差异 (Nejman et al., 2020)。

arbour本木: 蒙特利尔大学蒙特利尔大学学业淘汰制度

TMB,肿瘤突变负荷;Tregs ,调节性T细胞;MDSCs,髓源性抑制细胞;CAFs, 肿瘤相关成纤维细胞;EVs ,细胞外囊泡;HLA,人类白细胞抗原;CTLA-4,细胞毒性T淋巴细胞相关蛋白4;UV,紫外线。 肠道微生物在抗肿瘤反应的功效已在临床前模型以及黑色素瘤、肾细胞癌和NSCLC患者中得到证实 (Chaput et al., 2017; Gopalakrishnan et al., 2018; Matson et al., 2018; Routy et al, 2018)。 此外,多项研究证实抗生素对ICB的疗效有负面影响,可能是由于其降低了肠道微生物的多样性 (Derosa et al., 2018; Routy et al., 2018; Ve tizou et al., 2015)。 高纤维饮食及锻炼与肠道微生物群多样性的增加及短链脂肪酸 (SCFAs) 的富集有关,两者都与患者接受ICB治疗后生存期改善相关 (Barton et al., 2018; McQuade et al., 2019, 2020)。 通过粪便微生物移植、抗生素和/或益生菌或饮食变化调节接受ICB疗法患者的肠道微生物的临床前试验正在进行 (McQuade et al., 2019, 2020)。 CD8+效应T细胞通过释放细胞溶解因子及诱导肿瘤细胞凋亡在激发抗肿瘤免疫反应中起着核心作用(图2)。 ICB治疗前肿瘤边缘和肿瘤内CD8+T细胞的存在与更强的治疗响应相关(Tumeh et al.,2014)。

arbour本木

音乐本科、第一阶段医学博士与持续教育学部则有各自独有的预科课程,其内容也是相关的基础类课程,这三种独有的预科课程分别需要修毕24学分、40学分、12学分~24学分[ ]。 与在早期小鼠研究中观察到的相比,患者irAEs的高发生率突出了当今临床前模型的局限性,这种局限性不仅体现在预测患者irAEs发生率方面,也体现在对机制的进一步了解方面。 arbour本木 尽管正在开发新的临床前模型,但我们必须高度依赖基于各类临床试验患者样本的临床数据收集和转化研究。

目前已提出的一些潜在机制有助于解释一些患者在免疫检查点抑制剂治疗中遭受到的毒副作用。 这些可能的毒副作用机制并不相互排斥,不同的免疫相关毒副作用可能存在不同的机制。 这些T细胞在肿瘤区域被专业的APCs激活,并对肿瘤特异性抗原产生应答; 然而,它们可能凑巧对在正常组织表达的类似肿瘤特异性抗原的多肽产生反应。 或者,当自体肽在肿瘤区域被抗原提呈细胞(APCs)的表位提呈时,原本静止状态的已经存在的自身免疫反应T细胞和B细胞可能被激活。

比如,抗CTLA-4药物与正常组织表达的CTLA-4相结合,从而引发了补体介导的细胞杀伤作用,这是垂体功能出现障碍的机制(Iwama et al., 2014)。 体液免疫反应和B细胞也被证实可能与irAEs相关;外周B细胞库的早期变化与毒副作用相关 (Das et al.,2018)。 然而,即使同一靶点受到影响,在自身免疫性疾病中观察到的典型抗体并不总是出现在irAEs中(de Moel et al., 2019; Dougan et al., 2021; Luoma et al., 2020)。 多项研究已表明,磷脂酰肌醇-3-激酶(PI3K)激活突变与肿瘤细胞PD-L1表达水平升高相关,进而在胶质瘤、乳腺癌、前列腺癌、肺癌和胰腺癌中导致免疫逃逸(Crane et al.,2009)。 由于磷酸酯酶与张力蛋白同源物(PTEN)缺失导致的PI3K激活与黑色素瘤对PD-1抗体的较差应答相关,其可通过抑制PI3Kβ来逆转。 PTEN缺失降低了肿瘤中CD8+T细胞的数量和细胞毒性,也促进了对T细胞诱导的肿瘤凋亡的抵抗(Peng et al., 2016)。

最近的研究已证实细胞外囊泡(EVs),特别是EVs中的外泌体亚群,在肿瘤免疫和对ICB耐药中具有潜在作用(图2)。 来源于不同肿瘤的EVs表面均含有功能性PD-L1,包括黑色素瘤、胶质母细胞瘤、乳腺癌和头颈癌 (Chen et al., 2018; Ricklefs et al., 2018; Theodoraki et al., 2018) 。 在抗PD-L1抑制剂耐药的前列腺癌模型中,外泌体PD-L1抑制CD8+T细胞活性,诱导引流淋巴结中的T细胞耗竭,并促进肿瘤生长(Poggio et al.,2019)。 在接受抗PD-1治疗的癌症患者中,未受益于该治疗的患者治疗前循环外泌体PD-L1水平较高,反映了外泌体PD-L1在肿瘤免疫中的作用及其与T细胞耗竭的潜在关联(Chen et al., 2018)。 循环PD-L1+EVs水平可以反映肿瘤和免疫系统之间的动态互作,可能成为有前景的预测ICB应答的生物标志物。 在癌症的发生和发展过程中,肿瘤不断进化并可能呈现出各种机制来逃避肿瘤免疫监视及抑制抗肿瘤免疫反应。 在生理条件下,免疫检查点分子调控免疫系统,在感染或其它威胁成功缓解后减弱免疫反应。

在乳腺癌的临床试验中,抗雌激素疗法正与ICB结合,而在前列腺癌治疗中,抗雄激素疗法也正与ICB联合 (Ozdemir and Dotto., 2019)。 已有研究表明,患者产生强力的全身性免疫反应是癌症免疫疗法成功的先决条件 (Chen and Mellman., 2017; Spitzer et al., 2017)。 通过预测患者呈现各种新生抗原的能力,计算机建模已被用于描述整体的肿瘤免疫“适应性”(quksza et al., 2017)。 例如,HLA位点的纯合性导致抗原呈递的多样性降低,其与接受ICB治疗的癌症患者较低的生存率相关 (Chowell arbour本木 et al., 2018)。 例如,缺氧肿瘤已被证实肿瘤细胞和DCs上I型MHC的表达降低 (Ramakrishnan et al., 2014)。 耗竭的T细胞和肿瘤浸润的NK细胞也表现出线粒体生物合成失调;这引起了研究者们通过策略改善线粒体生物合成来促进肿瘤免疫原性的兴趣(Scharping et al., 2016; Zheng et al., 2019)。 除了缺氧对肿瘤免疫原性的显著影响外,研究者们正在积极探索免疫逃逸和对ICB耐药的新机制,包括受代谢条件影响的肿瘤微环境的其它方面,如营养来源的改变(Leone et al,, 2019)。

arbour本木: 蒙特利尔大学教学与科研机构设置

目前irAEs 治疗方式通常是终止ICB和使用一个疗程的大剂量皮质类固醇(Haanen et al., 2018; Puzanov et al., 2017; Thompson, 2018); 然而,更有针对性的治疗方案目前仍在试验中(Esfahani et al., 2020)。 所有治疗irAEs成功的案例均依赖于对病理学的早期认知及多学科专家团队共同探讨的积极有效的治疗方案(Haanen et al., 2018; Puzanov et al., 2017; Thompson, 2018)。 在纵向评估经纳武利尤单抗 (PD-1抗体) 治疗过程中的肿瘤遗传特征时发现,由于产生新生抗原的突变(而不是同义突变)减少,应答者的突变负荷降低 arbour本木 (Riaz et al., 2017)。 对抗PD-1治疗的良好应答与肿瘤进化景观的重塑有关,包括一些克隆群体在治疗中无法检测到,而T细胞克隆却增加 (Riaz et al., 2017)。 在ICB治疗过程中,肿瘤与免疫微环境的相互进化及共同进化不仅可阐释对ICB的耐药机制,还可用于开发预测疗效的策略。 对TAMs复杂且可变的表型研究表明,存在一系列M1和M2为两端的表型谱(Xue et al.,2014)。 M1型巨噬细胞典型地表达促炎症细胞因子并促进抗肿瘤免疫反应,而M2型巨噬细胞的特点是表达抗炎性细胞因子和趋化因子,抑制CD8+T细胞活化,促进Tregs的募集,并有助于肿瘤免疫逃逸(Xue et al., 2014)。

arbour本木

局部区域转移性黑色素瘤患者基线时血液中IL-17水平升高 (Tarhini et al., 2015) 及转移性黑色素瘤患者经伊匹木单抗(CTLA-4抗体)治疗后IL-6水平升高也与irAEs相关 (Valpione et al., 2018)。 通过在基线或治疗早期测量血液中11种细胞因子的水平(CYTOX评分)可更全面的评估细胞因子失调,其已被证明可以预测单独使用抗PD1治疗或联合使用抗CTLA-4治疗的患者的irAEs (Lim et al., 2019)。 目前正在寻找合适的预测irAEs的生物标记物,包括与拥有发生低级别和高级别毒副作用的患者以及适当的对照组(健康个体以及接受ICB治疗但未发生irAEs的患者)的多国大型数据库的合作 arbour本木 (Hoefsmit et al., 2019; Jing et al., 2020)。 近年来,大量以免疫单药及联合治疗的临床研究在国内外陆续开展,并已取得了多项令人振奋的结果。 然而,免疫检查点抑制剂的作用机制比我们想象的更为复杂,受益群体相对有限,大多情况下只有少部分癌症患者能够从中获益,部分患者还可能存在耐药和加速进展的风险。 例如,肿瘤细胞自身的遗传特征、肿瘤内部的侵润淋巴细胞的分布特征、抗原递呈细胞的状态等等,均会对免疫治疗疗效、耐药性等产生影响。

T细胞上的共刺激检查点CD28与DCs上的配体CD80(B7.1)和CD86(B7.2)相互作用,使抗原识别信号放大,从而成功激活T细胞(Rudd et al., 2009)。 为了防止活化的T细胞不受控地扩增,这种激活信号可被T细胞上的抑制性检测点,即细胞毒性T淋巴细胞相关蛋白4(CTLA-4;又名CD152)抵消,它可以与CD80/86配体结合产生抑制性信号,且与CD80/86结合的亲和力高于CD28(Rudd et al., 2009)。 CTLA-4的调节作用主要是缓和CD4+辅助T细胞的激活,同时促进调节性T细胞(Tregs)的增殖(Doyle arbour本木 et al., 2001; Wing et al., 2008),从而产生肿瘤进展的免疫抑制表型。 虽然自身免疫性疾病的遗传决定因素众多 (Hoefsmit et al., 2019),但对irAEs的遗传易感性定义仍不太明确。 某些HLA类型与各种irAEs的发展有关,这些关联似乎具有疾病特异性 (Cappelli et al., 2019; Hasan Ali et al., 2019)。

然而,可能包括许多潜在的机制,例如记忆B细胞和B细胞来源的细胞因子通过抗原呈递激活T细胞以及通过产生抗肿瘤抗体作出潜在贡献。 未来的研究需要确定这些细胞的确切作用机制以及在使用不同免疫检查点抑制剂情况下TLS的组分。 肿瘤免疫学的科学发现以及由此产生的利用免疫系统治疗癌症的突破性概念为癌症患者带来了巨大的临床获益,极大地推动了肿瘤学领域的发展。 arbour本木 目前免疫检查点抑制剂的一个主要缺点是在某些癌症(如胶质母细胞瘤和胰腺癌)中缺乏响应,这可能归因于其固有的免疫原性低。 在已证明ICB有效的癌症类型中,如黑色素瘤,有效和持久的响应仅限于某一个亚组的患者,且一些患者对治疗缺乏初始响应(即原发性耐药)。